Relative poengmodeller

De relative poengmodellene brukes i de konkurranser hvor tildelingskriteriene ikke er pris, kostnad eller kvalitet alene, men en kombinasjon av disse.

Publisert: 28. aug 2018, Sist endret: 15. nov 2018

Hva er en relativ poengmodell?

De relative poengmodellene kjennetegnes ved at pris/kostnad og de kvalitative kriteriene vurderes i relasjon til hverandre og ikke i forhold til forhåndsfastsatte kriterier. Både pris/kostnad og de kvalitative kriteriene vurderes i forhold til en poengskala hvor også hensynet til vektingen mellom kriteriene ivaretas.

De relative poengmodellene finnes i en rekke varianter. De mest vanlige variantene er poengmodellene hvor man tar utgangspunkt i at laveste pristilbud gir maksimal poengscore og hvor poengene for de øvrige pristilbudene vurderes i forhold til laveste pristilbud. De mest brukte modellene i denne kategorien er lineær og forholdsmessig metode.

En utfordring med å regne om pris til poeng samtidig med at man gir de kvalitative kriterier poeng og vurderer disse samlet innenfor et et felles poengsystem, er at man da sammenligner «epler og pærer» (pris og kvalitet).

For de relative poengmodeller hvor laveste pris/kostnad gis maksimal poeng (de modellene som er mest brukt), er det også en utfordring knyttet til sammenligningen med de kvalitative kriteriene. De kvalitative kriteriene vil ofte vurderes i forhold til noen vurderingstema og det er en risiko for at ingen av tilbudene gis maksimumspoeng i forhold til disse kriteriene.

Det anbefales derfor at du foretar en justering av poengene for de kvalitative kravene ("normalisering") slik at poengskalaen utnyttes på samme måte som for pris- eller kostnadsskalaen. På denne måten beholdes opprinnelig vektingen mellom pris/kostnad og de kvalitative kriterier. 

Videre er det slik at når poeng utregnes for pris eller kostnad og kvalitet, er de relative modellene konstruert slik at det vil være en risiko for at det tilbudet som f.eks. ender opp med høyeste (beste) poengscore for både pris og kvalitetselementene kan påvirkes av et irrelevant tilbud med laveste pris, men dårlig kvalitet. Sagt med andre ord så vil prisnivået på tilbudet med lavest pris kunne påvirke hvilke av de andre tilbudene med høyere kvalitet som vinner konkurransen.

Felles utfordring for de relative prismodellene er at de også tydeliggjør hvor viktig det er at du som oppdragsgivere har anledning til å redusere risiko for feil valg ved å foreta modellsimuleringer for på den måten avdekke mulige uheldige utslag av modellen før tildeling av kontrakt.

Vi har nedenfor beskrevet en del relative poengmodeller, men finner det vanskelig å anbefale en enkelt modell. Modellene har alle sine sterke og svake sider og noen kan også i enkelte tilfelle være ulovlig å bruke.

Råd ved bruk av relative poengmodeller

  • Bruk en så enkel modell som mulig
  • Vurder særlig spredning i pris og hva som er forventet – valg av evalueringsmodell bør påvirkes av forventet og faktisk prisspredning i tilbudene (det er tillatt så lenge ikke modellen er publisert i kunngjøringen).
  • Pass på å gi maksimal poengscore pr kvalitetskriterium slik at vektingen ift. pris ikke forskyves
  • Lineær modell kan brukes hvor priser som hovedregel ikke gir negative poeng og hele poengskalaen for kvalitet brukes.
  • Forholdsmessig modell kan brukes, men vær kritisk ift. tilbudte priser dersom forskjell mellom laveste og høyeste pris er store. Modellen vil da premiere tilbud med høy pris og bruk av modellen kan resultere i for avvikende og uventede poengscorer.

Under følger noen poengmodeller relatert til laveste pris.

Lineær modell

Basismodell: Basis lineær modell innebærer at forskjeller i poengscore gjenspeiler den prosentmessige forskjellen i pris (fra laveste tilbud). Formelen kan beskrives slik:

Sett inn formel

En generell utfordring med bruk av den lineære metoden er at tilbud som er mer enn dobbelt så dyre som billigste tilbud oppnår minuspoeng, som i realiteten innebærer å øke poengspennet og dermed oppnår tildelingskriteriet større vekt enn tilsiktet. Dersom modellen gir negative poeng for vurdering av pris men ikke for øvrige kriterier, vil dette i utgangspunktet være ulovlig, jf. KOFA-sak 2007/131.Dersom du opplyser om denne muligheten i konkurransegrunnlaget kan det imidlertid være tillatt, jf KOFA 2015/60.

Et råd kan være å utvide den lineære modellen slik at dyreste pristilbud får 0 poeng selv om det er mer enn dobbelt så dyrt. I KOFA-sak 2011/203 ble en lineær metode godtatt hvor dyreste tilbud som fikk 0 poeng var 150 % dyrere enn billigste tilbud. Forutsetningen for å gjøre dette må være at poengskalaen er tilstrekkelig vid til at det er mulig å premiere de relevante forskjellene mellom tilbudene.

Variant 1: Lineær modell med fast prosentsats

En variant av den lineære basismodellen er publisert av den danske Konkurransestyrelsen. Her gir fortsatt billigste pristilbud maksimalpoeng mens laveste pris pluss en fastsatt prosent gir minimumspoeng. Alternativt kan man også operere med en pris som er det maksimale av det man ønsker å betale og som da gir minimumspoeng.

Modellen er enkel å bruke og enkel å forklare, men det kan være en utfordring å fastsette prosentsatsen X som skal utløse minimumpoeng slik at modellen er egnet til å avspeile de forventede spredninger i tilbudsprisene. Forutsetter god kjennskap til markedsprisene.

Variant 2: Høyeste og laveste pris

En annen variant vurderes også høyest tilbudte pris slik at poengsettingen påvirkes av både den laveste og høyeste prisen som er inngitt. Formelen for denne varianten kan beskrives slik: 

Sett inn formel

Variant 3: Intervallmodell

Modellen innebærer at oppdragsgiver setter opp en matrise, der laveste pris får maks poeng, og høyeste pris minst poeng, og de øvrige tilbud gradert etter gitt prisspenn. Matrisen må settes opp etter at tilbudene er åpnet, slik at man vet at spennet på intervallene og ytterpunktene passer for tilfellet. Formelen for modellen er:

Størrelse på intervallet (i kroner)=(Høyeste pris-laveste pris)/antall intervaller 

Eksempel: Høyeste pris er kr 17 000, laveste pris er 10 000, antall intervaller settes til 10. Poenggivingen blir da som følger:

Pris i kroner

10000 til 10700

10701 til 11400

11401 til 12100

12101 til 12800

12801 til 13500

13501 til 14200

14201 til 14900

14901 til 15600

15601 til 16300

16301 til 17000

 Poeng

10

9

8

7

6

5

4

3

2

1

Forholdsmessig modell

Forholdsmessig modell innebærer at differansen i poeng blir mindre jo høyere prisforskjellene er fra laveste pris. Formel for forholdsmessig modell:

 Sett inn formel

Den forholdsmessige metoden innebærer at fratrekk i poeng svarer til den relative pris- og kvalitetsforskjellen. Sagt på en annen måte: Poengforskjellen blir mindre, jo høyere prisforskjellen er. Dette kan resultere i uventet avvikende poengscorer ift. forskjell i pris. I metoden vil nivået på den laveste tilbudsprisen være styrende for de øvrige tilbudsprisenes uttelling. Metoden fører videre til større poengutslag i intervallet nært opp til den laveste prisen, og små poengutslag ved høyere tilbudspriser.

Ingen tilbud vil kunne få poengscore 0 eller minuspoeng i denne modellen.

KOFA har i flere saker vurdert om den forholdsmessige modellen er ulovlig å bruke, jf særlig KOFA-sak 2014/95. Til nå har KOFA kommet til at den forholdsmessige metoden ikke i seg selv er ulovlig å benytte i evalueringen, men det er viktig at det bare benyttes i tilfeller hvor den er egnet til å påvise relevante forskjeller mellom tilbudene.

Hybridmodell

I den såkalte Hybridmodellen (utviklet av Oslo kommune) er den matematiske formelen som er brukt laget slik at den er lineær inntil et gitt knekkpunkt, da den går over til å bli forholdsmessig. 

Hybridmodellen tar delvis høyde for problemet med strategisk prising, samtidig som den bruker skalaen i større grad enn en ren forholdsmessig metode vil gjøre. Hybridmodellen er matematisk mer komplisert.

Poengfradragsmodellene

Poengfradragsmodellen innebærer at billigste tilbud får maksimal poengscore, og de øvrige tilbud får fradrag i poeng etter hvor mye de skille seg fra dette tilbudet, etter en faktor man setter selv.

Modellen finnes i to varianter, en prosentvariant og en prisvariant.

I prosentvarianten avgjør man hvor mange prosent dyrere (X) et tilbud må være for å få et poeng fradrag, mao. hvor dyrt ett poeng er.  Formel prosentmetode:

Sett inn formel

Ved prisvarianten avgjør man hvor mange kroner dyrere (X) et tilbud må være for å få et poeng fradrag, mao hvor dyrt ett poeng er. Formel kronemetode:

 

Poengmodeller hvor gjennomsnittsprisen i tilbudene er utgangspunkt for poengutregningen


1. Gjennomsnittsmodell

Gjennomsnittsmodell baserer seg på at vurdert pris får poeng relativ til gjennomsnittspris på alle innleverte tilbud. Tilbudet med den laveste sum får max poeng, mens de øvrige relateres til snittpris. Den minner således om Høyeste/laveste pris, men alle tilbudene påvirker referanseprisen. Modellen kan beskrives med følgende formel:

 Sett inn formel

2. Gjennomsnittsmodell - matrise

Gjennomsnittsmodell med matrise baserer seg på at vurdert pris får poeng relativ til gjennomsnittspris på alle innleverte tilbud etter en oppstilt matrise. Gjennomsnittspris fikseres mot gjennomsnittspoengsum. Tilbudene settes så i en matrise ut i fra gjennomsnittsprisen, med en korresponderende poengsum.

Eksempel: Poengspennet er fra 1 til 5, så gjennomsnittspoengsum er 3. Første intervall er satt til 5 %, som gir ett poeng fradrag eller tillegg hvis et tilbud er mer enn 5 % hhv dyrere eller billigere enn gjennomsnittsprisen. Neste intervall er satt til 25 % gir 2 poeng fradrag/tillegg.Eksemplet kan beskrives i følgende figur: 

 Sett inn formel

Modellen er ytterligere beskrevet i artikkelen "Metoder vid utvärdering av pris och kvalitet i offentlig upphandling".

Relative poengmodeller knyttet til referansepris

I stedet for å vurdere det enkelte tilbud mot en referansepris som baseres på ett eller flere av de øvrige tilbud, kan man fiksere referanseprisen. Man setter da en fiktiv, ønsket prisstørrelse, og måler tilbudene opp mot denne. Referanseprisen kan for eksempel være høyeste pris man er villig til å betale, budsjettert pris eller en beregnet pris.

En generell fordel med å benytte fikserte referansepriser er at man kan unngå problemet med at poenggivningen påvirkes av de øvrige tilbud. Dermed vil man ikke oppleve de samme ulempene som i eksemplene over, der vinnende tilbud varierte med den laveste prisen (fra et irrelevant tilbud). Man unngår samtidig muligheten for at leverandørene kan manipulere evalueringsmodellen.

Antagelig kan de fleste øvrige modeller for poengsetting av pris også brukes også med fikserte referansepriser, der man for eksempel bytter ut laveste pris med en fiksert referansepris. Her gis 2 eksempler på modeller knyttet til referansepris.

1.  Referansepris – høyeste akseptable pris

Ved denne modellen for fiksert referansepris setter man som fiksert referansepris det som er høyeste akseptable pris å betale. Tilbudet med laveste pris får topp score. Øvrige tilbud får poeng etter dette, basert både på denne referansepris og laveste pris. Slik sett ivaretar ikke denne metoden en av fordelene med referansepris, fordi laveste pris påvirker vurderingen av hvert tilbud. Modellen er også kalt Targetpris. Modellen kan beskrives med følgende formel:

  Sett inn formel

En ulempe med denne modellen er at den påvirkes av laveste pris.

2.  Middels poeng med målpris

I en evalueringsmetode publisert av den danske Konkurransestyrelsen brukes en målpris som utgangspunkt. Denne målprisen tilsvarer en middels poengverdi. De øvrige prisene gir poeng i forhold til målprisen etter en lineær beregningmetode. Minimums- og maksimumspoeng fastsettes til pluss minus X % i forhold til målpris.

Fordeler: Samme fordeler som modellen over.

Ulemper: Vanskelig å fastsette en målpris som er midt i spennet av tilbudsprisene – fordrer god markedskunnskap.

Modellen har en utfordring ift å fastsette prosentsatsen som skal utløse maksimums- og minimumspoeng.

Modellen egner seg best dersom målprisen ikke offentliggjøres og man har anledning å justere denne ift de tilbudte priser.

Fant du det du lette etter?

Fant du det du lette etter?
*